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S H A L L O W - W A T E R  E Q U A T I O N S  W I T H  D I S P E R S I O N .  

H Y P E R B O L I C  M O D E L  

V. Yu. Liapidevskii UDC 532.591 

A hyperbolic shallow-water model is constructed with allowance for nonlinear and dispersive 
effects. The model describes solitonlike solutions in a range of wave velocities and predicts the 
breaking of smooth waves when the limiting amplitude is attained. The model is found to be 
adequate by comparison with experimental data on the evolution of a wave packet generated by 
the moving lateral wall of a channel. 

In t roduc t ion .  The presence of solitary waves is the characteristic property of a nonlinear dispersive 
dissipation-free medium. In such media, the tendency to wave breaking, which is caused by the nonlinear 
character of the equation, is compensated by dispersion, thus providing for the existence of invariable-shape 
waves. Another distinguishing property, namely, the additional law of energy conservation, leads to the absence 
of structures, i.e., running waves with different limits at infinity, among the solutions. In some cases, media 
with dispersion are described by continuum equations in which the equation of state relates the pressure not 
only to thermodynamic variables but also to their derivatives. Such equations appear, for example, in the 
theory of long waves on the surface of a liquid [1] and in the models of two-phase media [2]. The variational 
principle of derivation of these equations was discussed by Gavrilyuk and Shurgin [3]. 

If the equation of state includes derivatives with respect to the desired functions of spatial variables, 
the system of equations that describes the motion is not hyperbolic. Various versions of the Bonssinesq and 
Korteweg-de Vries equations which appear in the second shallow-water approximation [1] fall into this class 
of equations. 

However, the motions of a dispersive medium can be given by a hyperbolic system in the case where only 
the derivatives with respect to the internal parameters of the medium, calculated along the partide trajectory, 
enter the equation. For example, for a single-velocity model of a bubbly liquid, the system of Iordanskii- 
Kogarko equations [4] for a compressible carrying medium is hyperbolic. The more general hyperbolic model 
of a two-phase medium was developed by the author in [5]. 

The main difference of the first-order hyperbolic systems that describe the media with dispersion from 
the higher-order systems is the fact that smooth solitonlike solutions in the first case exist only in some 
range. In propagating a nonlinear wave with a velocity exceeding the velocity of long waves, a structure of the 
jump-wave type is formed, i.e., after the limiting amplitude is attained, the solitons break in the hyperbolic 
models. 

With the limiting amplitude attained, the problem of wave breaking is of particular interest in the 
theory of gravity waves. Although a correct theory allows one to obtain the limiting amplitude and velocity of 
wave propagation in the Cauchy-Poisson problem, the soliton amplitude can be arbitrary [1, 6] in the second 
approximation of shallow-water equations. The upper boundaries of the soliton velocity, which arise in some 
models, are not internal for this model, but they are introduced from the exact formulation of the problem. 
For example, Ovsyannikov et al. [6] showed that the velocity of the solitons which propagate in a liquid at rest 
with depth h and acceleration of gravity g is not higher than c = ~ within the framework of the second 
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approximation. This estimate was derived from the wave's shape determined from the second approximation 
and the Bernoulli integral taken from the correct formulation of the problem. 

The goal of the present paper is to construct the simplest hyperbolic shallow-water model with 
dispersion in which there are not only the conventional critical velocity of long waves cl = V/~,  but also the 
second critical velocity c2 = / 3 V ~  (/3 > 1), which corresponds to the propagation velocity of the waves of 
limiting amplitude. The velocity c2 was determined experimentally by Bukreev and others [7, 8], who showed 
that a transition from smooth to broken waves as the critical velocity c2 is reached is observed both for the 
solitary waves and for the bores which propagate in an unperturbed liquid. 

Since the model that we constructed contains no empirical constants, except for the factor a, which 
characterizes the ratio of the vertical and horizontal scales of motion, the adequacy of the model was established 
by comparison with concrete experimental data on the evolution of a wave packet generated by a moving lateral 
wall [8]. 

1. M a t h e m a t i c a l  M o d e l .  Shallow-water equations are derived for the mean depth h(t, x) and the 
velocity u(t, z) under the assumption of the hydrostatic character of the pressure distribution in a liquid layer. 
Taking account of the nonhydrostatic character can be performed by introducing a new unknown variable r/ 
that characterizes the instantaneous value of the layer depth, which can be different from the average value 
of h. Therefore, the total pressure P in the equations of motion is regarded as a function of variables h and )7. 
To determine the new variable )7, we use an additional energy equation in which the internal energy e depends 
on the variables h and )7 and the velocity 

v = )7t + u)7z. (1.1) 

Note that ~h(h,)7, v) = P/h  2. 
For the one-dimensional motion of a homogeneous incompressible-fluid layer in the gravity field, the 

laws of conservation of mass, momentum, and energy are of the form 

ht + (hu)~ = O, (hu)t + (hu ~ + P)~ = O, 

(hCu~12 + ~)), + (hu(u2/2 + e) + P u ) ,  = 0. (1.2) 

After that,  we consider flows in which the pressure distribution in a fluid layer differs little from the 
hydrostatic distribution, i.e., I)7 - h[/h << 1. Therefore, the concrete form of the dependence P()7, h) is of 
no concern. It is important to specify correctly the behavior of this function in the neighborhood of the 
equilibrium state )7 = h. 

We shall choose the following dependences: 

P = ~ g h  "q / '  r  2 (1.3) 

which ensure the hydrostatic pressure distribution in an equilibrium flow for h = )7. 
Of course, the choice of the equations of state (1.3) is not unambiguous, but the form of the function 

e(h, )7, v) is found with accuracy of up to the constant factor a from the dimension of the entering quantities 
for a given dependence P(h, )7). The value of a is not important either, because the parameter a can be 
excluded from system (1.1)-(1.3) by using the extension of the variables which is used in modeling long-wave 
flows: z --+ z, t --* r h --* eh, and )7 --) e)7. 

The consequence of system (1.1)-(1.3) is an analog of the Rayleigh equations for bubble oscillations in 
a fluid [9]: 

+ = - 1 ) .  

In view of this, the usual shallow-water equations, i.e., the first two equations in (1.2)'with P = (1/2)gh 2 and 
the equilibrium characteristics A~" u 4- v ~ ,  are the equilibrium model (h _ )7 and v -- 0) for the derived 
system. The characteristics of system (1.1)-(1.3) in an equilibrium flow (h = )7) can be represented in the 
form X~ = = u 4- 4T----S~. In addition, there is the multiple contact characteristic A~ = u. 

195 



a H~ H 

o )' o 

Fig. 1 

Thus, we are dealing with the classical situation where the characteristics of the equilibrium and 
original models alternate, i.e., A~" < A[ < ),} < A+ < A~'. Therefore, smooth running waves for a complete 
system exist within either A + < D < A~ or A? < D < A~" (see [1]). 

2. R u n n i n g  W a v e s  o f  S y s t e m  (1 .1) - (1 .3) .  We shall consider the solutions of (1.1)-(1.3) that 
depend on the variable ~ = z - Dt  (D > 0). We note that ,  for ~ --* co, the solution tends to an equilibrium 
state (h = r /=  h0, v = 0, and u = 0) The single dimensionless parameter  that  determines the wave structilre 
is the Froude number  Fr = D / ~ .  Passing over to dimensionless variables, one can assume that  h0 = 1, 
g = 1, and Fr = D. 

The conservation laws (1.2) yield the following wave relations: 

= 1 h ( u -  n )  = - D ,  h ( u -  D) 2 + l h 3 D2 + 2, 
2 r/ (2.1) 

1 3 h 2 1 1 D2 
= + 1 .  

The dependences r / =  r/(h) and v 2 = (1]a)H(h)  are found from (2.1), and the wave shape is restored from 
Eq. (1.1), which takes the  following form for a running wave: 

d~(h) hv(h) 
= --F- (2 .2 )  

The functions r/(h) and H(h)  are defined explicitly from (2.1): 

3 h 2 1 1 D ( h _  2 1). (2.3) tl(h) = h4 / (2hD 2 + h - 2D2), H(h)  = 1 4 rl(h ) 4 tl(h) - 2 - 

The function a(h) = drl/dh has the single root h, = 8D2/3(1 + 2D2), which corresponds to a minimum of the 
function t/(h). We note tha t  h .  > 1 only if D > ~ = A~'. The necessary condition for the existence of the 
continuous solution (2.1) and (2.2) is the positiveness of the function H(h)  from (2.3) in the neighborhood of 
h = 1. By virtue of (2.1), we have 

dH 1 (  h2 ) 
dh =  (h)2 - 1 a ( h ) ,  

and the behavior of the function H(h)  in the neighborhood of h = 1 is determined by the value of the 
derivative (drl/dh)(1) = a(1) = 3 - 2D 2. The inequalities 0 < a(1) < 1, which ensure the positiveness of the 
function H(h)  in the vicinity of h = 1, are satisfied if 1 < D < lv/]-.5.5. For this case, the graph of the function 
H = H(h)  is depicted in Fig. la.  For h > 1, the solution of system (2.1) and (2.2) is a soliton whose velocity 
is in the interval between the equil'ibrium and frozen velocities of the characteristics. The  positive part of the 
function H(h)  for h < 1 produces no soliton, because the solution of Eq. (2.2) cannot he extended through 
the point h, < 1 at which a(h . )  = O. 

196  



A smooth soliton of the limiting amplitude is implemented for D = 1~-.-.5.5. Here we have hm = 1.45 
and r/m = rl(hm) = 1.58. For D > 1V/1-.5.5, only a configuration of the jump-wave type [9] is possible. This 
configuration consists of a hydraulic jump which transforms h = 1 into h = hi [we note that H(hl) > 0, i.e., 
hi < hi < h,n] and a periodic solution with minimum depth hi and maximum depth hm (see Fig. lb). Since 
Eq. (1.1) is written in a nondivergent form, the question arises on the choice of relations on a hydraulic jump, 
which determine the state behind the jump. 

In the present study, we shall not dwell upon this problem in detail. We note only that, for nonuniform 
systems of the type (1.1)-(1.3), the choice of the laws of conservation is of no primary concern because the 
variation of the value of hi behind the jump front leads only to the phase shear of the periodic solution 
following tile wave, and the problem of the choice of relations on a discontinuity reduces to the question which 
section of the stationary periodic wave behind the jump should be included in a section of the relaxation 
zone that is replaced by the discontinuity in this model. Therefore, one can assume that the values of hi or 
hm are replaced behind the jump at which the velocity is v = 0. Here Eq. (1.1) is written in the form of an 
inhomogeneous conservation law: 

Ohv Ohuv 
+ = F(h, rh v). (2.4) 

c3t c3z 
The function F is chosen in such a manner that Eq. (2.4) is a differential consequence of system (1.1)-(1.3). 

3. C o m p a r i s o n  w i t h  E x p e r i m e n t  [8]. As mentioned in deriving system (1.1)-(1.3), the parameter 
a appears in the modeling and has the order e2. The numerical value of a is obtained from comparison 
with experiment. One effective and controllable method of obtaining a wave packet is wave generation of the 
moving lateral wall of a channel [7, 8]. This problem is completely equivalent, within the framework of the 
constructed model, to the problem of the motion of a piston in a gas at rest according to a prescribed law. 
In contrast to the gas dynamics, the wave structure, however, will be much more complicated because of the 
nonlinear dispersion. To test the model, we shall use the experimental data of [8] in which the velocity of the 
wM1 was maintained close to the constant velocity U for AT, and the wall immediately stopped. As a result, 
an anMog of the N wave was formed at a fairly long distance from the moving wall, but the initially monotone 
perturbation disintegrated into a chain of solitons moving with different velocities because of dispersion effects. 
In [8], the attention was mainly focused on the experimental determination of the critical velocity e2 at which 
the initially smooth waves break. The value of C2 ---- ) ~  = ~ a t  which wave breaking occurs in the 
model (1.1)-(1.3)is in agreement with that obtained in [8]. The same can be shown for the limiting amplitude 
T/m = 1.58~'7~, which was obtained in Sec. 2 for a smooth soliton propagating at the limiting velocity 
~}" = ~ over a quiescent liquid of depth h0. 

However, it is of keen interest to compare the phase pattern of waves generated by a moving wall with 
experimental data. The problem is essentially nonstationary, and its solution can be found only by a numerical 
calculation by the model (1.1)-(1.3). 

Since the structure of the equations is similar to the equations of gas dynamics, one can use the standard 
calculation schemes. We use an analog of Godunov's scheme, and, to solve the inhomogeneous equations along 
the trajectories, use is made of the Runge-Kutta method with a time step matched with the basic scheme. 
Calculation results for U = 23.3 cm/sec, AT = 1.3 sec, and h0 = 3.1 cm are given in Fig. 2 in the form of the 
dependence r /=  r/(t) (solid curve) for fixed values of z, which are reckoned from the initial point of motion of 
the wall: x = 50, 110, and 250 cm (Fig. 2a-c). The dotted curve shows the experimental dependences from [8, 
Table 1] for the initial and boundary conditions indicated above. It is worth noting that the time of motion 
of the wall in a numerical calculation is decreased compared with the experimental value (AT ,-, 1.76 sec) to 
obtain the same duration of the initial perturbation immediately after stoppage of the wall (x = 50 cm). The 
quantity a that  characterizes the ratio of the vertical to the horizontal scale equals 0.025. 

The effect of the dissipatior/associated with wail friction, viscosity, and wave breaking is not taken into 
account in the model. Nevertheless, the numerical calculation incorporates qualitatively and quantitatively 
the major specific features of the evolution of the nonlinear wave packet. 

Of interest is the process of development of a wave packet from a local initial perturbation which is 
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close to a piecewise-constant perturbation. With distance from the source, the perturbation disintegrates into 
a chain of waves whose amplitude grows. The amplitude of the first crest attains the limiting one already at a 
distance of x = 110 cm, and one can observe the development of the wave-breaking process in the experiment 
which causes a decrease in the amplitude of the leading wave [8]. The mechanism of wave breaking is not 
envisaged in the model (1.1)-(1.3), and hence the numerical and experimental values of the amplitudes of 
the leading wave differ greatly at z - 250 cm. Nevertheless, the phase and amplitude characteristics of 
the remaining waves in the wave packet are reflected satisfactorily. This means that despite the presence of 
powerful dissipative mechanisms, the main contribution to the formation of the wave packet is given by linear 
and dissipation effects, which are correctly reflected in this model. 

4. Conclus ions .  The shallow-water model constructed possesses a number of advantages. It is an 
inhomogeneous hyperbolic system of equations for which the first-order equations in the shallow-water theory 
are an equilibrium model. In view of this, the model contains solitonlike solutions propagating in a range of 
velocities (V~7~ < D < V f f ~  over a quiescent liquid of depth h0. If the soliton velocity exceeds the second 
critical velocity (see [8]), which coincides in the model considered with the velocity of the characteristics, i.e., 
D > ~ ,  there is no smooth solution of system (1.1)-(1.3). This model does not describe the wave- 
breaking process upon attainment of the limiting amplitude. However, the combination of the approaches 
developed in the present paper with the possibility of considering the near-surface flow region as an interlayer 
in which an intense short-wave or turbulent motion with a set of parameters of its own that characterize it 
completely [10] indicates a method of constructing a more complete model. Both the dispersion effects and 
the effect of turbulent mixing on the structure of large-amplitude gravity waves should be equally presented 
in an extended model. This offers the possibility of an adequate description of the transition of a wave bore 
to a turbulent one as its temperature rises. 

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 96-01- 
01641a and 95-01-01164a). 
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